Event Driven Architectures
How and When Should You Use It?

Name Sumith Kumar Puri
Experience ~17 Years
Designation Principal Consultant

Company Xebia IT Architects, Bangalore

Word Count: 999, Paragraph Count: 44, Line Count: 125

Introduction and Needs

Over the past four years, I've worked on various microservices projects, and we've
always had the same primary concern, Data Management. Senior Architects have
had to answer questions such as: How do we maintain data? Where is the single
version of truth? And how can we achieve distributed transactions? How can we

quickly process high velocity business events?

Great problems bring greater solutions... and new problems too! Here is the
introduction to the star-studded solution, Event Driven Architecture (EDA).
However, EDA has been in use since the advent of enterprise software systems. It
was the need for loosely coupled systems to communicate via asynchronous
mechanisms that led to their wider adoption. Event-driven systems play a greater
role in the newer forms of Software Architecture, such as Microservices. To get a
sane, transactional distributed system we must implement EDA or its alternatives

correctly.

The growing market for EDA and its alternatives offers a wide range of products,
tools, and solutions. The simplest form of EDA needs to be understood before we

move forward.

How to Use EDA? (Components of EDA)

We can achieve the most basic form of EDA by providing implementation for each

mentioned, abstract yet mandatory component.

e Event Producer - It is usually a software application or system that detects a
new event or fact. For example, starting a database transaction, successful
database transaction, failure of transaction, parameter change, etc. are all

Events.

e Event Channel - If implemented, it would propagate information in a
publish/subscribe manner (queues or topics) or by event streaming (data is

available to read from wherever and whenever).

| |
+| Event Consumer 1 |

|. I

event Frogucer 1 ‘ - = 1
1
[— .
.‘| Ewent Ingeston |
(Ewvent Channel -

“\ ""-\-\.___ e
Event Producer 2 ‘
e

Event Consumer 2

=| Event Consumer 3

Event Driven Architecture (EDA) - Most Basic Form

e Event Consumer - The event consumer is, usually, the event processor. This
includes the actual purpose of the event and may involve logic processing
based on the specific event or stream of events. It may choose to process data

in any of the following forms

o Simple Event Processing - A simple event is read from the event channel by an event

consumer for the purpose of running some action or logic based on the event.

o Event Stream Processing - Uses a Data Ingestion Platform such as Apache Kafka, as

a pipeline to ingest events and then process them using event stream processors.

o Complex Event Processing - Usually processes data as a series of events using
platforms like Apache Storm. It tries to find event correlations among a continuous

window or batch of events.

Example of an Event Driven System (Java, Drools Expert, Drools Fusion, Java Queue)

Budha, Complex Event Processing (By Sumith Puri)

When to Use EDA?

There are many uses of the Event Driven Architectures, as mentioned below:

e Used when Multiple Subsystems Need to Receive Event Updates for Performing Some Activity
e Performing Event Correlation via Pre-Defined Rules on an Incoming Stream or Batch of Data
¢ Used to Perform a Real-Time Activity or Biz Logic when the Velocity of Incoming Data is High

e Perform Transaction or Data Management via Orchestration of Distributed Actions or Services

In older architectures, the primary use of EDA was for the purpose of ingesting and
processing events/messages. It later included the processing of streams of events
at a very high speed. Additionally, it involves analysing events by running rules that

match events within a given sliding window or batch.

EDA, especially within microservices, is utilized for the purposes of data
management or distributed transactions. It can also be used to orchestrate steps or

services to accomplish a single logical business transaction.

https://github.com/sumithpuri/skp-mhc7-hackerearth-budha

Variants of Event Driven Architecture

This discussion is primarily around the application of EDA to Take an Action, Execute
a Workflow, Synchronize Data, Apply Distributed and Compensating Transactions.
There are alternatives or variants or newer forms that are used to achieve EDA.
Most of the ones in the Microservices world are related to Transaction

Management. Orchestration is when an orchestrator instructs participants on the

local transactions to execute. Choreography is achieved when each service

publishes events that trigger local transactions in other services.

Orchestration

Invoke Process

l

—

INVOKE

INVOKE I

INVOKE —1\’

INVOKE

| SERVICE 4 | SERVICE 3 | SERVICE2 | SERVICE 1]

L

Composite
Service

Event Driven Architecture

Saga (Camel, Axon)

Saga is the closest variant of EDA is based upon the idea that a series of one or
more compensating transactions can be executed if a step fails in a distributed
transaction. Saga supports both choreography and orchestration. Apache Camel

Saga or Axon Saga are popular frameworks that allow its implementation.

Choreography

Invoke Process
l Event Broker >

Sub

Pub Bventl |)

Sub
-—b
Event 2
Pub

Sub

Event 3 1
Service 6
Sub

Event Driven Architecture

Step Functions (AWS)

Step Functions are a series of steps modelled to achieve a distributed business
transaction. It can be used to design a workflow with retry, catcher and
compensatory steps. It can model either Saga, Orchestration or Choreography
based transactional mechanisms. AWS Step Functions are the most popular

implementation of step functions. Step Functions internally create state machines.

Workflow (Temporal.lO)

There are various adaptations of workflow modelers or state machines that allow
definition of workflows for the purposes of business orchestration. It can be used
to create any form of workflows, with or without compensating transactions.
Temporal.lO is a good example of a Workflow Designer for Microservices

orchestration or choreography.

Command Query Responsibility Segregation (CQRS)

Even though this existed quite before microservices become mainstay in enterprise
development, CQRS is equally applicable for microservices. It simply emphasizes
the need for one channel or set of services to write to the database and another set
to read from the database, with both the databases kept in sync via external

mechanisms.

Event Sourcing

The idea of writing a sequence of events to the database that can be read to
recreate the actual final state of the activity or transaction is called as event
sourcing. This is one popular alternative to Event Driven Architectures and can be

used to run workflows or decide on transactional state.

Challenges of EDA

| will try and briefly cover the challenges or drawbacks of EDA. Again, these are

easily understood without detailed explanation:

Initial Curve of Understanding Problem at Hand
Learning Curve of Newer Tools & Technologies
Recovery from Total Failure in ED Architectures
Reconciliation of [Partial Failures] in EDA Steps

X X %X X X

Needs Acceptance: Performance isn't Real-Time

References

e https://docs.microsoft.com/en-us/azure/architecture/quide/architecture-styles/event-driven

e https://microservices.io/patterns/data/event-driven-architecture.html

e https://microservices.io/patterns/data/saga.html

[End of Article / Blog Entry]

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://microservices.io/patterns/data/event-driven-architecture.html
https://microservices.io/patterns/data/saga.html

Real-World Experience

The experience gained as a (Platform & API Dev Lead) in a Neo Banking Project at an IT Consultancy and
experience as a (Principal Architect) in leading the Microservices Adoption Strategy in a Software Product
Company was the basis of writing the above article. Also, my experience was further enriched via links

from Microsoft, Microservices.lO, IBM at the time of writing this article.

About the Author

Sumith Kumar Puri is a Principal Consultant at Xebia IT Architects, Bangalore. He has a total of 17y of
Experience and is a Java, Java EE, and Microservices Expert. He completed his Xth, Xlith (Computer Science)

from Naval Public School, Kochi, India. He graduated as a Bachelor of Engineering (Computer Science &

Engineering*) from SRSIT, Bangalore, India. He also has completed his Executive Program (Data Mining &

Analytics) from lIT, Roorkee and Executive Program (Entrepreneurship) from the 1IM, Kashipur. He is highly

recognized in the Developer, Technical, Engineering Communities under the DZone MVB/Core*, Java Code

Geeks, Foojay.lO, Developer.com, jGuru.com, IEEE, ACM and CSI.

He is the Author of the Book — Microservices Architecture, The Decision Maker. You may buy a copy of

this book from Amazon, Flipkart or Notion Press. Kindly subscribe to his technical blog, directly using your

Google or Gmail Id.

https://rebrand.ly/skp-msa-tdm-amazon-prime
https://rebrand.ly/skp-msa-tdm-flipkart-india
https://rebrand.ly/skp-msa-tdm-notion-press
https://rebrand.ly/skp-ts-blog-subscribe

