
How to Get Your AWS
Account Hacked
(And How to Avoid It)

A McKinsey survey of global executives showed
that digitization of their companies in terms of their
customer and supply chain interactions as well as
internal operations have accelerated by three to four
years.

But in the process of refreshing your systems,
upgrading your software and moving to become more
digitally apt – all at a faster rate than what the status
quo typically saw pre-pandemic – you might not
always give every aspect that comes with that change
the proper attention.

One often overlooked aspect is the security of your
IT solution. According to the 2021 Global Threat
Intelligence Report, 30.000 websites are hacked every
day. Over 90% of these security breaches stem from
misconfigurations and can be prevented just by having
the right setup in place.

The phrase “innovate or die”, which years ago
seemed a little radical, has now taken instant
roots in many executives’ minds – mainly due
to the aftermath of the Covid-related lock-
downs that sparked a massive increase in the
need for digital solutions

„The ultimate security
is your understanding
of reality.”
H. Stanley Judd

In this e-book, I’ll show you how I was able to easily
access real AWS accounts through a number of access
points, loopholes and weak points in 3 applications
typically used to work with AWS solutions: Atlassian
(company), Jenkins (application) and Kubernetes
(framework). I’ll show you the process by which this
can happen and what you can do to prevent yourself
from falling victim to a hacker attack.

Contents
How to Get Your AWS Account Hacked
A CASE FOR WHITE HAT HACKERS

ATLASSIAN

The Method

Policies and how they can be exploited

Finding the Owners

Atlassian Security Tips

JENKINS

Privileges and the Damage They do

Workspace

Environment Variables

Console Log

Jobs

Manage Jenkins

How Easy is it to get Access to Your Account?

Jenkins’ Potential Weak Points

KUBERNETES

In the Beginning, There was Configuration

1. /api/v1/secrets

2. /api/v1/configmaps

3. /api/v1/pods

How I Accessed an AWS Account of a Huge Multinational

1. Finding the Victim

2. Uncovering Secrets

3. Striking Gold

4. Finding the owner

Securing Your Kubernetes

SUMMARY

Author

01

03

03

04

07

07

08

08

09

09

10

10

12

12

13

14

15

15

16

16

16

17

17

17

18

18

19

20

The Trick to Covering all Bases
The need for solid security is especially true
for Cloud solutions, because your data is constantly
flowing from one point to another. If not secured
properly, that data can be vulnerable to exploits on
their way from endpoint to endpoint.

There are people who may want to cause not only
disruption to your website, communications and
applications for financial gain, but also to damage your
reputation. They operate in the dark, away from the
mainstream, and specialize in exploiting loopholes and
weak points.

So, the million-dollar question
is: where are the weak points
in your system?

The CISO of Société Générale, Stephane Nappo, once
said that “one of the main cyber-risks is to think they
don’t exist.” It can indeed be tricky to identify security
threats using conventional testing methods, such as
unit tests, integration tests, smoke tests and regression
tests. More often than not, these tests – typically
conducted from inside your own organization – will not
always manage to realistically create the conditions
that really exist when someone is looking to get in from
outside of your organization.

It takes a thief to catch a thief goes the old saying.
This is also true in the digital realm. Coupled with a
sound security strategy, this principle forms the basis of
ethical hacking, also called white hat hacking.

What is White Hat Hacking?
Contrary to common belief, hackers aren’t always
malicious!

A Case for White Hat Hackers

01

01

We generally differentiate between black hat and
white hat hackers – all of whom usually have deep
knowledge about breaking into computer systems and
bypassing security protocols. The difference lies in the
intention.

A white hat hacker is a security expert who uncovers
security risks in a software, which they then report to
the owner in order for them to put in place the relevant
security measures; a white hat hacker always operates
with good intentions.

What exactly are those intentions? To raise the overall
security of your systems

And then there’s the hackers we all know from the
movies: black hat hackers. They’re security experts
who intend on exploiting uncovered security breaches
to profit from it themselves – naturally, without prior
consent from the system owner. Their primary goal is to
extort, destroy reputations and other nefarious things –
I’m sure you’ve seen the headlines.

An Important Piece of the QA Process
It’s a cat-and-mouse game: white hats try to uncover
systems exploits and have them fixed before black hats
can take advantage of them.

External white hat hacking should be an essential part
of an organization’s QA process, because it closes a
gap that internal penetration testers can’t bridge – even
if realistic circumstances are simulated. That’s because

they’ll typically work within a framework, given certain
assignments and, most importantly, they often won’t be
personally motivated to dig really deep.

In my role as security researcher, I often put on the
old white hat and search the internet for vulnerable
software. During my search I’ll find just that –
misconfigured machines. The trick lies in finding the
owner of a given machine. That’s the key challenge that
I – similarly to my counterparts, the black hat hackers –
try to solve.

The CTO of one of the companies I helped plug certain
security gaps put it like this: “It’s like you stumble upon a
house with an open door, walk right in, find a picture of
the owner and their number written on the back. Then
you call them and say, hey I found your stuff, might want
to lock your doors.”

The difference between internal and external pen tests
is that when you do penetration testing from inside an
organization, you’ll usually just report vulnerabilities
without checking for credentials, because you know
who the house belongs to. Yet checking credentials
is exactly what black hat hackers do – their primary
target will often be unknown to them at first. They’ll try
everything to find those valuable credentials. And when
they do, they can begin making a profit.

Like I said, it takes one to
know one!

02

I started by searching the internet using search engines
like Shodan, Censys or BinaryEdge, which index
responses from various ports on all IPs and constantly
monitors the internet to index vulnerabilities. During
my search, I found multiple machines that were running
outdated Jira software.

The thing with Jira versions below v7.3.5 is that they
contain a vulnerable open proxy that can be used
anonymously to return any data from internal networks.

Let’s assume the Jira server works under the following
address:

https://example.com/secure/Dashboard.jspa

Atlassian

The Method

On my quest to learn more about effectively securing Cloud solutions, I sometimes do some penetration testing
on some unsuspecting companies to see how secure a given software is. Usually, I’ll find interesting topics in
the Cyber Security Subreddit and exploit db and then decide to explore something more in depth.

On a recent “recon raid”, I went through some old vulnerabilities in Atlassian Software that were already uncovered
in 2018 to see if some companies were still vulnerable. Back in 2018, this bug was quite widespread, and many
companies scrambled to fix that security gap – but not all, as it turned out.

So, I knew that Jira in this version contained that bug,
but just to make sure, I checked the vulnerable plugin
to confirm that the vulnerability still existed in this
machine. And it did!

Proof of concept – I tried to open google.com under
example.com domain:

https://example.com/plugins/servlet/oauth/users/icon-
uri?consumerUri=http://google.com

03

02

Then I made sure the machine ran on AWS by checking the DNS name. It said that this IP belongs to EC2 instance
on AWS, so I was on the right track – and delving deeper into familiar territory.

Now, I know that an EC2 instance can query the local address for meta data.

Meta data contains details of the EC2 instance like AWS Region, Availability Zone, SSH key name – and when
there is any IAM role attached, you can even extract temporary credentials!

The EC2 instance generates these temporary credentials in order to communicate with other AWS services. You
can extract them and use them from your local machine.

So that’ what I did! I simply asked for the EC2 metadata.

https://example.com/plugins/servlet/oauth/users/icon-uri?consumerUri=http://169.254.169.254/latest/meta-data/

Policies and how they can be exploited

Depending on the policies used by the role attached to
the EC2 instance, you can do different things with it. If a
given role only lets you send logs to CloudWatch, you
could for example flood CloudWatch with weird data
to confuse it and force an instance restart or initiate
autoscaling.

But sometimes people make the mistake of not
following the least privilege principle, i.e. not allowing a
role only as much access to information for them to be
able to do their job.

So, it could be that a given role has
AdministratorAccess policy attached, and then the
JIRA instance can be used to do pretty much anything:
create resources, modify resources, terminating
resources, encrypting, decrypting, accessing billing
details, etc.

The meta data returned an “iam/” endpoint, which is
available only when a role is attached to the instance.

04

Asking for the temporary role credentials gave me fresh AWS access, secret keys and a session token:

https://example.com/plugins/servlet/oauth/users/icon-uri?consumerUri=http://169.254.169.254/latest/meta-data/
iam/security-credentials/EXT-JIRA-SERVER-1-ROLE

It’s also good to know the region in which resources are created, because it’s required when you want to use AWS
CLI. This can also be extracted from metadata:

https://example.com/plugins/servlet/oauth/users/icon-uri?consumerUri=http://169.254.169.254/latest/meta-data/
placement/availability-zone

With all this information, you can use AWS CLI to check
what actions are possible using that role.

My script initially simply asked for the S3 Buckets list,
the IAM users list and billing information from last
month.

All requests were successful. That usually means
the role has an AdministratorAccess policy attached,
because usually only administrators can access billing.

To identify the owner, I additionally asked for AWS
Organization details and Route53 domains.

As mentioned before, using the Jira machine, you can
access the internal network it’s located in. All private
hosted zones (example.local) are also open to you.

The different Atlassian applications that may run in the
internal network only – like Confluence or BitBucket
– are now open to me. Sometimes there was even
no login needed because it was a local resource, and
since I’m accessing it from Jira, the system thinks I’m on
the internal network.

With this kind of access, a black
hat hacker could:

 ― create an IAM user for themselves,

 ― create additional access keys for
existing users,

 ― attach admin roles to other vulnerable
services,

 ― copy objects from S3 buckets,

 ― create AMIs from running instances and
start new ones with their keys to log in,

 ― share AMIs with other AWS accounts,

 ― remove everything from the account,

 ― leave the AWS Organization,

 ― remove CloudTrail logs,

 ― and more…

05

The above list illustrates the many options a black hat
hacker has to mess with your AWS account.

On the long list of leaked access keys I found, some
gave me access to accounts spending nearly $100,000
a month on AWS.

Here’s a breakdown of the costs incurred, taken from
the billing information:

As you can see, this company is using a lot of AWS resources.
However, their security measures could definitely be improved!

 ― AWS CloudTrail: 0.00

 ― AWS Config: 66.92

 ― AWS Direct Connect: 25.25

 ― AWS Glue: 0.00

 ― AWS IoT: 0.00

 ― AWS Key Management Service: 45.80

 ― AWS Lambda: 298.20

 ― AWS Secrets Manager: 0.00

 ― Amazon DynamoDB: 24.94

 ― Amazon EC2 Container Registry (ECR): 0.06

 ― Amazon EC2 Container Service: 0.00

 ― Amazon ElastiCache: 1,041.44

 ― EC2 – Other: 6976.19

 ― Amazon Elastic Compute Cloud – Compute:
61,008.41

 ― Amazon Elastic File System: 3.61

 ― Amazon Elastic Load Balancing: 2,020.69

 ― Amazon Elasticsearch Service: 1,686.58

 ― Amazon Kinesis: 145.08

 ― Amazon Relational Database Service: 2,270.92

 ― Amazon Route 53: 1,148.44

 ― Amazon Simple Email Service: 2.67

 ― Amazon Simple Notification Service: 0.01

 ― Amazon Simple Queue Service: 0.00

 ― Amazon Simple Storage Service: 1,770.76

 ― Amazon SimpleDB: 0.00

 ― Amazon Translate: 0.08

 ― Amazon Virtual Private Cloud: 559.91

 ― Amazon CloudWatch: 345.10

 ― Tax: 7,673.75

Total monthy spending on AWS: $87,114.84

Monthly Spending on AWS in $:

06

Money well Spent,
but not well Secured.

After finding the owners of the Jira machine, I
contacted them to inform them of the gap in their
security. They said that my discovery truly shocked
them and the vulnerability was immediately fixed.

They also said they would introduce some changes in
their cloud security policies and reassess their access
management.

It’s a good practice to thank for the person for the
responsible disclosure with a Bug Bounty – a reward
given to a security researcher for highlighting security
issues. It motivates the researcher to continue his work
of helping companies create tighter security processes.

Unfortunately, there was no bug bounty this time!

I end this chapter with a quote from the great American
writer Henry David Thoreau – straight out of his opus
magnum, Walden.

Finding the Owners

Atlassian Security Tips

To find the responsible organization, there are a few
ways you can go about it. Here’s are some methods I
frequently use to find identities.

 ― Domain name from SSL Certificate

 ― Domains from Route53 hosted
zones

 ― Domain names from S3 buckets list

 ― Email addresses on IAM users list

 ― First name, Last name from IAM
users list

 ― -> LinkedIn

 ― URLs/Logos on Jira login page

 ― AWS Organization master payer
account root email

 ― AWS account root user email

 ― Responsible disclosure email
address from contact page

 ― Data protection email address from
privacy page

So, what went wrong in this example?
1. Broken principle of least privilege – Any user,

program, or process should have only the bare
minimum privileges to be able to perform their
function. In this case, the administrator role attached
to the EC2 gave it unlimited privileges.

2. Outdated software – Software updates can include
new or improved features and better compatibility
with other devices and applications. But more
importantly, they also provide security fixes. In this
case, it was a well-known exploit from 2018 that
allowed the sensitive information to be extracted
this easily. Atlassian fixed it a long time ago, but
users who haven’t patched their applications are
still vulnerable.

Solutions to these are:
1. Apply the principle of least privilege – This would

reduce the risk of unauthorized access to critical
systems or sensitive data through low-level user
accounts, devices or applications.

2. Update your software regularly – Besides new
features and greater compatibility, tighter security is
a main component of software updates.

„If you have built castles in the air,
your work need not be lost; that is
where they should be. Now put the
foundations under them.”

Vulnerable apps & versions:

 ― Bamboo < 6.0.0
 ― Confluence < 6.1.3
 ― Jira < 7.3.5
 ― Bitbucket < 4.14.4
 ― Crowd < 2.11.2
 ― Crucible & Fisheye < 4.3.2

07

Jenkins is an open-source automation server that helps automate those parts of software development that
are related to building, testing and deploying. It plays a major role in ensuring continuous integration and
delivery.

It is also used as a management tool to help develop pipelines for building, testing and deploying
Cloud infrastructure; it’s a popular choice for many development teams who work within the AWS cloud.

In this chapter, we’ll review potential security issues and establish what you can do to secure your AWS accounts
against any unwanted access through Jenkins.

Jenkins

Jenkins requires a lot of privileges to deploy and
destroy infrastructure and resources in the Cloud,
making it a great entry point for hackers!

That’s why most companies usually restrict access by
hiding it behind a Virtual Private Network (VPN), making
it available only for their employees.

It does happen, however, that a firm’s Jenkins server
is publicly accessible and that anonymous visitors use
it through different access levels – the easiest being
read-only permissions.

Privileges and the Damage They do

Once again donning my white hat, let me first shed
some light on this particular access type.

You’d be surprised what damage can be done
with “just” a read-only permission. Access to AWS
credentials, data and secret information… these and
more can be revealed to you – if you know where to
find them.

Let’s look at three specific entry points that can grant
potential access to some juicy details.

08

03

Within Jenkins, Workspace gives you an overview and easy access to your project structure and project files.

Workspace

Environment Variables

Here, an unauthorized user can easily find the source
code of a given application, which they can then use in
conjunction with the read-only permission to preview
all project files.

Besides the source code, you can also
find configuration files, data dumps, CSV files
containing PII or even database dumps.

That’s all fine and dandy, but here’s the real kicker: you
can find plain text AWS credentials in config files or
even hardcoded in the application.

Once a hacker finds this, they can do as much as IAM
Policies attached this user allow him to.

 By the way: another entry point is the Step Workspace.
If you work with pipelines, this is where the project
structure and files in your pipelines are accessible.

These are defined for each job individually and are available only during the job run. With the read-only authorization,
you can find AWS access keys, logins, passwords and other sensitive information here. The Environment Variables
page is available for most already completed jobs.

09

Console Log

Jobs

The console log contains the results and output of every command run for each job. You can find a lot of interesting
information here, like logs of credentials, endpoints and e-mail addresses.

Another access level
commonly found on
publicly exposed Jenkins
machines allows any
anonymous user to create
a Jenkins Job.

A Job could be a script
that is then run by the
Jenkins machine. This
means you can create any
script you like, and Jenkins
will run it for you.

Do you want to
extract temporary
access keys from the
Jenkins EC2 metadata? No
problem:

Example jobs which I found containing
sensitive data:

 ― Creating new AWS IAM Users (and printing access
keys);

 ― Generating temporary AWS access keys using STS
(and printing them);

 ― Testing the application on different access levels
(and printing login and password used).

Username/Password allows you, for example, to log into the stage environment where the test was conducted. Now,
the stage environment can be connected to a production database. And when that’s the case, then we’re in it for the
big time!

curl http://169.254.169.254/
latest/meta-data/iam/se-
curity-credentials/

10

Do you want access keys stored in Jenkins Credentials? No problem, print them on the screen or send in an email.
How about Jenkins using IAM User access keys instead of a role? Great:

cat ~/.aws/credentials

If that’s not enough, there’s
another powerful permission
level – Manage Jenkins.

11

Manage Jenkins

How Easy is it to get Access to Your Account?

This access type allows you to open “Manage Jenkins”
page with all configuration details.

With this permission level, you can preview (and
modify!) the current configuration of all extensions. It can
give you email addresses, private keys, credentials, git
repository addresses and more.

Manage Jenkins also gives you access to a script
console. The console may be used to run any scripts
without running a job. Attack scenarios are similar to the
previous access level with job creation. But the console is
also useful to decrypt Jenkins Credentials. Just grab the
hash of the interesting credential (inspect the html form
field) and run the following script:

Xebia was doing a security audit for one of our clients a
few months ago. As part of this audit, I was given AWS
credentials to the client’s account with read – only
access.

Using these credentials, I checked every part of the
project infrastructure – and, not after long, I found a
Jenkins machine running on one of the AWS regions.

https://example.com/plugins/servlet/oauth/users/icon-
uri?consumerUri=http://169.254.169.254/latest/meta-
data/placement/availability-zone

It will print the value hidden behind selected credential
hash.

If you get access to AWS access keys that belong to
Jenkins, you can do everything the Jenkins user/role is
allowed to do.

The above examples are all true and possible. To
illustrate that this does indeed happen, let me tell you a
little story of one case I was involved in recently.

The machine was located in a public subnet and with a
public IP. It also looked like it was created using terraform
templates. Security group allowed everyone to access it
(0.0.0.0/0).

Unfortunately, there was a login page with no
anonymous access.

I also found a full log from the provisioning of the Jenkins
instance on CloudWatch. Astonishingly, the log ended
with the credentials of a newly created Jenkins admin
user.

So I opened the Jekins login page once again – but this
time I was able to login to an admin account. By
checking IAM Role and Policies attached to
the EC2, It already knew that Jenkins had an
AWS AdministratorAccess policy attached to this role,
and so I now have full access to the AWS account.

The Client assumed that their account was secured
because users had to log in. They didn’t count on the
login data being easily accessible on the CloudWatch
log with a read-only permission.

12

The above access points do not have to be vulnerable. As I mentioned before, cyber security is a strategy that
needs to be implemented on all fronts.

Any security breaches become possible when security measures aren’t applied consequentially and effectively. In
the case of Jenkins, we can identify four main issues:

Jenkins’ Potential Weak Points

„If you reveal your secrets to the wind,
you should not blame the wind for
revealing them to the trees.”

H. Kahlil Gibran

Jenkins is Publicly Available

Not having a VPN in place can have serious consequences.
The internet is a vast jungle of connectivity that has its
shares of predators, and they will not hesitate to jump on
easy prey. If not VPN, lock it at least at a Security Group
level, allowing only approved IPs to connect. Home IPs
of your employees are not considered safe, as a single
IP could cover half of a big city.

Bad Virtual Host Configuration

Domain access is properly restricted, but IP access is
using default vhost with no restrictions. This means that
when I try to open https://jenkins.example.com the
connection will NOT be permitted. But then if I try
with the IP behind this domain, it will use a different
configuration file on the server and will let me in.

Jenkins Security is Disabled

Jenkins has some security options. For example, by
default it requires you to log in. Yet, setting these
up can be cumbersome and time consuming, so
some companies choose to disable the security
module and… forget about it later. “How does someone
know the IP of my newly created Jenkins machine?
Only my employees know that, and they don’t need to
login to do things”

Broken Principle of Least Privilege

“Give Admin rights to everyone, they may need it at
some point”. This is a common one – admin rights
are given to people because they think that, at some
point, they might need it. This can happen when you
don’t want your technical lead to be bothered every 5
minutes with a request.

13

How to Avoid These Leaks

The above points can definitely be avoided with the
right security measures and strategy. Here are some
tips on what you can do so secure your AWS accounts
running Jenkins.

1. Make sure that Jenkins is only accessible from a
local network or use a VPN

2. Ensure that the security settings in Jenkins are
properly set up – check the domain and direct IP
access.

3. Only give Jenkins access to your AWS environment
as required. The Principle of Least Privilege is your
friend.

Kubernetes
I’m excited to dive right into this one because it’s a hot topic, as so many businesses are starting to work with
Kubernetes in connection with their AWS accounts!

So in this chapter, I’ll give you an overview of the
potential weak points of Kubernetes and show you how
I uncovered real-life AWS credentials during my last
research run.

First thing’s first: a short overview of what Kubernetes
is and how you typically use it in connection with AWS
accounts. If you know this part, skip ahead to the next
page.

14

04

In the Beginning, There was Configuration
Managed Kubernetes like EKS usually have APIs secured
with mutual TLS, IAM roles and API-level RBAC (Role-
based Access Control). These generally constitute a
pretty secure setup.

But when developers configure Kubernetes, it can hap-
pen that these security settings are overruled in favor
of a less complicated setup. As a result, the API gets
exposed.

Working with public Cloud providers doesn’t mean you
should have public APIs. And yet, this is one of the most
common issues when it comes to Kubernetes.

These k8s APIs give anyone with access the opportunity
to look into different parts of the environment configura-
tion.

A Kubernetes API is the looking glass through which we
can discover a plethora of information, some of which
may be of interest to a hacker. What follows are three
ways to get to that juicy meat.

If set up properly, they are encrypted with AES. But the
encryption is being handled transparently by the API, so if
you’re given the appropriate permissions in RBAC, you’re
able to decrypt and read the secrets.

Did you know?

Kubernetes (/koo-ber-nay’-tace/) comes
from Greek and means “sailing master”.

So now that the plain-English definition
is out of the way and we’re all on the
same page, let me put on my white
hat and see where the common weak
points of this thing are.

1. /api/v1/secrets

Sensitive info, such as passwords and keys, is stored in the aptly named Secrets.

These are encoded with base64, which doesn’t really have anything to do with security but rather serves to avoid
characters escaping in requests/yaml files.

$ echo ZXhhbXBsZQo= | base64 – d

For example, you could find GIT Repository or database
credentials, .dockerconfig files and AWS access keys
stored here. You shouldn’t be able to, but I’ve seen it
happen in my research.

15

2. /api/v1/configmaps

ConfigMaps is basically the content of various configuration files which are used in your application – instead of
keeping them in your repository.

Within it, the “annotations” parts can give you access to email addresses and project names, while the “config file
contents” could even harbor plaintext secrets!

I’ll walk you through my Kubernetes security research
step by step – from the way I found a “victim”,
uncovered their AWS credentials through /api/v1/
secrets to finding the contact e-mail of the person
responsible for the AWS account.

All actual references to the account owner are
anonymized for their own protection.

3. /api/v1/pods

You can get access to plaintext secrets through “arguments” and entry point “command”.

Reading about the theory can be fun and good, but it
doesn’t hold up to a solid, real-life example.

How I Accessed an
AWS Account of a
Huge Multinational

16

1. Finding the Victim

In chapter 1, I mentioned one of the tools that helps me find exposed data: Binaryedge.io. It scans the entire public
internet to uncover exposures to help you secure them.

So as a first step, I switch on the VPN and simply search for an unsecured machine.

My eyes fall on some AWS EC2s running in the US, so I go into that list and just pick one at random.

The credentials are right
there, just waiting to be
base64-decoded. And lo
and behold! I am now in
possession of the aws_
access_key_id and the
aws_secret_access_key.

I can see some tokens,
certificates… and suddenly
I hit the jackpot!

2. Uncovering Secrets

The most straightforward path can be the most effective, so that’s the
one I start with. I simply go to:

/api/v1/secrets

Now I can see the entire configuration details of the Kubernetes – and
this is just after a few clicks. There ain’t no magic tricks!

3. Striking Gold

And now the lucrative part begins. I open my terminal
and configure a new AWS profile with the access keys.

Then I run my script to check the access level of the
account by asking for IAM users, S3 buckets, last
month’s costs, etc…

After a few seconds waiting time, I’m in – and can see
all details pertaining to the AWS account, complete with
number of users, associated costs, S3 buckets and the
AWS Organization master account e-mail!

In the account summary, I can see that it’s got 11 Users,
57 policies and 91 roles attached to it, so it’s not huge
but not small either. And there’s the total cost of this
infrastructure for the last month.

17

Securing Your Kubernetes

4. Finding the owner

Now that I have all this information, I want to find the owner in order to inform them of the exposure.

I already have the AWS Organization master e-mail account (which has some revealing info in the domain name)
but I want to get one more just to be on the safe side.

Using the same AWS profile, I can extract a root e-mail from a recent AWS support case – if there is any. The
account owner e-mail domain was the same as the previously found one, so I know that I have the owner.

As you can see by the example above, it can be very
easy to get into an AWS account through Kubernetes.
But it should never be that easy.

The exposed account belonged to a large multinational
company. After I contacted them with the info, they
managed to fix everything within a few hours.

This could have been avoided from the start. Let’s see
how in our conclusion.

As is often the case with these types of vulnerabilities,
they can be avoided by implementing sound security
measures.

Here are three recommendations on how to secure
your Kubernetes.

1. Keep your k8s API secured

Don’t disable the default settings, which have RBAC and
mTLS. If you need to do this for any reason, at least limit
inbound connections to your office IPs only.

2. Use IAM Roles instead of access keys

There is no need to generate an access key for your
application running on EKS. Use roles for your service
accounts used by your pods.

3. Limit the privileges of your application

If your application needs to talk to S3, you can limit it
to a single bucket. It really doesn’t need an admin-like
policy to work! This also applies to k8s RBAC. It’s a
common mistake to assign cluster-admin roles to users
and service accounts.

Bonus tip:

Another common problem is that rights to exec into
containers and/or debug containers are too open.
Combined with a missing seccomp/apparmor setup
(which aren’t on by default) – this makes it possible to
escape container and access host and other container
resources.

18

Cyber security is not an isolated act – it’s a process involving policies, training, compliance, risk assessment
and infrastructure. Not having this process in place can lead to important data losses and reputational
damage. It’s basically like working out – you gotta keep at it to stay strong!

This is particularly true for solutions that exist in the Cloud. These are often front and center of
modernization efforts, and in setting up or running software in the Cloud, often times simple mistakes
can have big consequences.

As exhausting as it sounds, cyber security is a never-ending story. As you use more and more digital
tools, you have to make sure that you stay on top of your platforms and accounts. Educating yourself
and conducting internal and external security audits will help you in understanding and owning the
tools to secure your systems and AWS environments.

Cyber security will always play a major role on the stage of business in the digital age. Don’t take the
topic lightly and don’t make mistakes that can be avoided.

My advice to you is make the security analysis of each component
of your digital solution a standard practice. That way, you stay in
control and will be able to fend off any unwanted intruders.

Summary
How to Get Your AWS Account Hacked

„Without the opinion
of an expert, there’s no
such thing as certainty.”

Joanna Ruocco
19

Michał Brygidyn
Cloud Solutions Architect & Security Expert
michal.brygidyn@xebia.com
https://www.linkedin.com/in/michalbrygidyn/

Michał is an experienced Security Researcher (White Hat)
and Cloud Solutions Architect with DevOps skillset.
He is passionate about finding sources of leaking
data and has already helped companies from various
industries to improve their infrastructure’s security.
His experience also covers building a successful AWS
partnership including preparation for competencies and
programs. Outside of work, he’s a big fan of ice hockey.

About Xebia:
Xebia is an IT Consultancy and Software Development Company that has been creating
digital leaders across the globe since 2001.
With offices on every continent, we help the top250 companies worldwide embrace
innovation, adopt the latest technologies, and implement the most successful business
models. To meet every digital demand, Xebia is organized into chapters. These are teams
with tremendous knowledge and experience in Agile, DevOps, Data & AI, Cloud, Software
Development, Security, Quality Assurance, Low Code, and Microsoft Solutions. In addition
to high-quality consulting and state-of-the-art software, Xebia Academy offers the training
that modern companies need to work better, smarter, and faster. Today, Xebia continues to
expand through a buy and build strategy.
We partner with leading IT companies to gain a greater foothold in the digital space.

Find more information on how Xebia is driving innovation at www.xebia.com.

20

http://www.xebia.com

